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1  |  INTRODUC TION

Attempts to understand thermal perception in dynamic environ-
ments1-7 indicate that popular steady-state heat-balance models 
such as the predicted mean vote8 are inappropriate for predictions 
of sensation or comfort. Zhang et al.6,7,9 and de Dear10 proposed 
alliesthesia as a theoretical framework capable of describing per-
ceptual processes in non-steady-state exposures. Based on the 

ground-breaking work by Cabanac,11 alliesthesia describes the 
psychophysiological phenomenon of pleasure arising from stim-
uli that play a corrective role within a regulated system. In the 
context of thermal comfort, examples include suddenly elevated 
air movement for a warm occupant or providing radiant heating 
for a currently cool occupant. A more detailed description of al-
liesthesia in built environments can be found in Parkinson & de 
Dear.12 Subsequent work13 demonstrated that pleasure responses 
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Abstract
Research into human thermal perception indoors has focused on “neutrality” under 
steady-state conditions. Recent interest in thermal alliesthesia has highlighted the he-
donic dimension of our thermal world that has been largely overlooked by science. 
Here, we show the activity of sensory neurons can predict thermal pleasure under 
dynamic exposures. A numerical model of cutaneous thermoreceptors was applied 
to skin temperature measurements from 12 human subjects. A random forest model 
trained on simulated thermoreceptor impulses could classify pleasure responses 
(F1 score of 67%) with low false positives/negatives (4%). Accuracy increased (83%) 
when excluding the few extreme (dis)pleasure responses. Validation on an independ-
ent dataset confirmed model reliability. This is the first empirical demonstration of 
the relationship between thermoreceptors and pleasure arising from thermal stimuli. 
Insights into the neurophysiology of thermal perception can enhance the experience 
of built environments through designs that promote sensory excitation instead of 
neutrality.
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can occur within the thermoneutral zone and appear to be driven 
largely by changing skin temperatures. This was reinforced by later 
works14,15 showing that pleasure responses follow a particular psy-
chophysiological pattern that included skin temperature change. 
This empirical evidence, along with suggestions by Cabanac16 and 
de Dear,10 indicates that efforts to understand thermal alliesthesia 
should closely examine the role of cutaneous thermoreceptors in 
eliciting pleasure.

Afferent neurons in the skin, commonly referred to as ther-
moreceptors, provide the functional system for the perception 
of temperature in humans.17-19 The somatosensory system relies 
on thermoreceptors to detect changes in ambient temperature 
over a wide range of conditions.20 Pioneering electrophysiological 
studies of various mammals21-29 identified structurally and func-
tionally distinct warm-sensitive and cold-sensitive neurons. The 
molecular basis of this temperature transduction remains largely 
unclear, but more recent investigations have uncovered subpopu-
lations of temperature-sensitive neurons that encode and transmit 
skin temperature over specific temperature ranges30-32 as shown 
in Figure 1.

A comprehensive review of cutaneous thermoreceptors by 
Hensel18 is a foundational contribution to our understanding of 
temperature perception. Much of the content has been reviewed in 
earlier papers on alliesthesia (see 10 and 12) but it is worth revisiting 
some relevant details:

1.	 There is a difference in discharge frequency at static tem-
peratures compared to the heightened response during skin 
temperature change.19,22,26,28 For example, Figure  2 shows the 
discharges from a cold thermoreceptor dramatically increase 
following sudden cooling of the skin, but gradually decrease 
and stabilize once the temperature is static. The volley of 
thermoafferents generated during rapid temperature changes 
allows for better discrimination of both magnitude and time 
course than slower drifts.21,34,35,36

2.	 Cold receptors are located at shallower depths in the skin (0.1–
0.2 mm) compared to warm receptors (0.5 mm),18 although Ivanov 
et al.37 reported finding subcutaneous cold receptors at depths of 
2.0–2.5 mm from the surface.

3.	 Thermoreceptors are ubiquitous in mammalian cutaneous tis-
sue—of the estimated one million sensory neurons comprising the 
somatosensory system, 280 000 are thought to be responsible 
for temperature transduction.38 However, they are unevenly dis-
tributed across body sites, and cold receptor density is greater 

than that of warm receptors.18 Investigations of local sensation 
responses have associated receptor densities as the neurophysi-
ological basis of weighting coefficients for predicting the contri-
bution of skin temperature to sudomotor actions and perceptual 
responses.5,6,7,39,40,41,42

4.	 The shallower depth, higher density of receptors, and larger dy-
namic response lead to increased activity of cold receptors 21,22 
during rapid temperature decreases (up to 30 times greater) com-
pared to warm receptors during rapid temperature increases (up 
to 5 times greater).43

Some studies investigated body-region sensitivity to periph-
eral thermal stimuli by applying a small thermode to various body 
parts.45-47 Luo et al.48 used this method to obtain warm and cool 
sensitivity maps for the entire body. Aside from those local ther-
mal sensitivity analyses, researchers also investigated the effect 
of warming or cooling one body segment on the whole-body 
thermal sensation. Nakamura et al.49 asked subjects to evaluate 
both thermal sensation and thermal comfort while selectively 
forcing local skin temperatures of four body sites. Although the 
face generally exhibited the largest change in local thermal sen-
sation during local cooling or warming, thermal comfort can differ 
in its response pattern with respect to magnitude and direction. 
These results align with the findings of similar investigations of 
local thermal comfort5,6,7,50 and led the authors to conclude that 
thermoreceptor density alone cannot explain observed regional 
sensitivity. Other efforts to understand the neuronal pathways 
responsible for thermosensation have suggested that higher-
order processing by the central nervous system largely influences 
perceptual processes.20,21,31,34,51,52,53 As the neural pathways for 

Practical implications

•	 Pleasure experienced during changes in temperature 
can be predicted using machine learning and simulated 
activity of receptors in the skin

•	 This knowledge could inform tools for architects or en-
gineers to design buildings and spaces that elicit thermal 
pleasure responses

•	 Represents a paradigm shift in understanding and 
modeling of human thermal perception in dynamic 
environments

F I G U R E  1  The static discharge rate of 
cold and warm thermoreceptors over a 
range of skin temperatures. Modified after 
Guyton and Hall33
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temperature perception are unclear, efforts by thermal comfort 
researchers to investigate the neurophysiological basis should 
focus attention toward using simplified models of known func-
tional aspects of thermoreceptors.

There are two distinct dimensions of stimulus perception—the ob-
jective evaluation (magnitude and intensity), and the affective evalua-
tion (quality or valence). Existing work has explored the psychophysical 
connection between the objective dimension of environmental stimuli 
(thermal sensation) and the somatosensory system (thermoreceptor 
activity) by simulating thermoreceptor discharge frequencies in non-
steady-state exposures. The first, by de Dear et al.,54 involved tran-
sitioning human subjects through temperature step-changes (both 
up- and down-steps) of differing magnitudes while recording immedi-
ate impressions of thermal sensation. Thermoreceptor impulses were 
simulated using the numerical model developed by Ring & de Dear55 
based on first principles of heat transfer through human skin. The re-
sulting Dynamic Thermal Stimulus (DTS) model of receptor activity 
showed a clear relationship with the observed change in sensation 
votes immediately following temperature step changes. More recently, 
Kingma et al. 56 used observed skin and core temperatures from human 
subjects exposed to ramping ambient conditions as input variables to 
their mathematical model of thermoreceptor discharge rates based 
on the coefficients in Mekjavic & Morrison.57 The simulated outputs 
from the thermosensation model performed well, with an average root 
mean square error of only 0.38 in the prediction of dynamic thermal 
sensation votes.

In addition to investigations of thermal sensation and neuro-
physiology, significant attention has been given to exploring how 
thermoafferent pathways could potentially contribute toward the 
control of body temperature.53,57,58,59,60,61,62 All this research in-
terest in the neurophysiological mechanisms of thermosensation 
highlights the potential of this exciting field of knowledge to contrib-
ute toward our understanding of thermal comfort and perception 
in dynamic environments. Yet our review of extant literature found 
no published work attempting to connect functional aspects of 
neurophysiology to the affective dimension of thermal perception. 
Despite phenomenological differences between thermal sensation 
and thermal pleasure, the sensory inputs that form these experi-
ences originate from cutaneous thermoreceptors.

To examine the relationship between sensory neurons and 
thermal pleasure, we used a numerical model to simulate thermo-
receptor activity in dynamic environments. Simulations were based 
on human skin temperatures measured during climate chamber ex-
periments. A random forest model trained on the thermoreceptor 
activity was developed to predict thermal pleasure experienced 

during temperature changes. We validated the model using an in-
dependent dataset of psychophysiological measurements.

2  |  METHODS

Physiological and psychometric data from an earlier human-subject 
chamber experiment on thermal alliesthesia13 were used to train the 
machine learning predictive model. Thirteen volunteers (six women 
and seven men) participated in the study; key anthropometric data 
are reported in the original paper. Our focus for this study was on 
warm exposures (warm displeasure with a cool corrective change). 
We used data from a subsequent experiment to test the predictive 
skill of the model on an independent dataset with different environ-
mental conditions and subjects.

2.1  |  Thermoreceptor model

The model of heat diffusion in cutaneous tissue introduced by Ring 
& de Dear 55 and refined again by de Dear et al.54 and Ring et al.63 
was used to simulate thermoreceptor activity. This numerical model 
presents human skin as a slab consisting of 36 layers with one-
dimensional heat transfer (see Figure  3). Each layer is considered 
with its own thermal properties (capacity, conductivity); further de-
tails are given in Ring & de Dear.55 The boundary layers in direct con-
tact with the skin slab are defined as the subcutaneous tissue (layer 
0) and the skin surface (layer 36). Thermoreceptors are “implanted” 
into the layers relative to their approximate depth in the skin; a cold 
receptor sits two layers below the skin surface in layer 34, and the 
warm receptor in layer 32. Both the dynamic and static thermore-
ceptor discharge rates are calculated based on empirically derived 
thermal sensitivity coefficients from Hensel.18

Changes to the way the thermoreceptor model defines the 
boundary layer conditions were made during the rewrite of the 
model from Fortran to C++ to adapt it to the current investiga-
tion. Rather than assuming a constant temperature for layer 0, the 
ability to read-in values for each time step was added to allow 
for a closer temperature approximation of the subcutaneous 
layer. This is particularly relevant when calculating heat transfer 
through the skin of distal sites in which the subcutaneous tissue 
has been cooled by heat losses through arterial and skin blood 
flows. Similarly, the option to read-in observed skin temperature 
for layer 36 was included, eliminating the need to consider cloth-
ing layers and the microclimatic boundary in the heat transfer 

F I G U R E  2  The dynamic and static 
response profile of a cold thermoreceptor 
recorded in a human subject during 
sudden cooling. Modified after Campero 
et al44
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calculations. Using observed skin temperature directly is advan-
tageous as it implicitly considers convective, conductive, radia-
tive, and evaporative heat loss. Furthermore, this process should 
be straightforward to implement in detailed thermophysiological 
models with some modification.

2.2  |  Dataset for model development

The laboratory experiments in Parkinson et al.13 included se-
quenced environmental temperature step changes and ramps de-
signed to elicit particular alliesthesia responses. A fan was placed 
behind the 12 subjects (wearing light clothing ensembles of 0.31 
clo) to provide elevated air movement (0.5  m/s) during ramping 
temperatures in the warm exposure (from minute 10, t10). Ten 
subjects chose to initiate the fan. Data from two temperature 
down-steps—one more mild (t40) and the other following exer-
cising in a warm room (t125)—were used to train the model for 
stronger (dis)pleasure responses.

Skin temperatures from 12 sites across the body64 were the 
physiological inputs to the thermoreceptor model. An additional skin 
temperature measurement on the back of the neck was included as 
an unclothed site being directly forced by the targeted air move-
ment. Linear interpolation of skin temperature records increased the 
temporal resolution from 0.2 Hz to 1 Hz to limit the square wave 
response of the model caused by changes in temperature over each 
time step. For the purposes of this analysis, the temperature of the 
subcutaneous layer was fixed at 36°C for proximal body segments 
(forehead, shoulder blade, lower back, chest, abdomen, upper arm, 
and thigh) and 35°C for distal sites (forearm, hand, calf, and foot) as 
a rudimentary consideration of the insulative effect of muscle and 
fat tissue, and additional heat loss from skin blood flow and counter-
current heat exchange.

Thermoreceptor impulses at each local body site were simulated 
at 20 Hz to get both the steady-state and dynamic responses of cold 
and warm receptors. Simulated receptor activity was summed to 
get the cumulative impulse count over one-minute periods to match 
the frequency of thermal pleasure responses. When combining re-
ceptor activity across body sites (eg, calculating total impulse rates 
across all sites), we used an unweighted average of the summed im-
pulses based on three considerations: (a) the nonlinear response of 
thermoreceptors would lead to significant errors if a single mean 
(whole-body) skin temperature was used as input for the simulation 
of thermoreceptor activity56 (b) there is currently no 12-point per-
ceptual weighting scheme for local body sites, and (c) that sensitivity 
alone does not explain regional contributions to overall thermal per-
ception.49 All receptor impulse counts were scaled and centered per 
subject. This resulted in 52 input parameters to train the alliesthesia 
model—four simulated thermoreceptor impulse rates for 13 body 
sites—for model development.

Time series data in Figure 4 show skin temperature responding to 
changes in ambient temperature, and these changes are mirrored in 
the associated thermoreceptor response. The dynamic response to 
sudden temperature changes is evident in the cold receptor activity 
at t40 and t125 following the temperature down-steps. Mean ther-
mal pleasure also reflects thermoreceptor impulses, with increasing 
displeasure as warm receptor impulses increase and pleasure occur-
ring during spikes of cold receptor activity following temperature 
step changes.

2.3  |  Dataset for model validation

We used an independent dataset from different subjects (n = 22) 
and distinct protocol of dynamic exposures to validate the allies-
thesia model. This independent dataset is from a laboratory study 

F I G U R E  3  Graphical representation 
of the thermoreceptor model modified 
after de Dear et al.54 Heat flows through 
each of the skin layers. The location of the 
cold and warm receptors in the skin slab 
is shown in layer 34 and 32, respectively. 
Formulae give the coefficients for the 
static and dynamic receptor responses
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2270  |    PARKINSON et al.

investigating thermal pleasure responses to elevated air speeds 
(both cooled and ambient temperature) targeting the face and 
back of the neck in a warm environment (26°C) after exercises; 
see supplementary material for a data summary. Skin temperature 
was measured on the forehead, cheek, front of the neck, back of 
the neck, and the hand using thermocouples. We used the same 
method of simulating and processing thermoreceptor impulse rates 
to build the validation dataset as was used for the model develop-
ment dataset.

2.4  |  Machine learning alliesthesia model

There were a total of 1260 records of simulated thermoreceptor 
impulses and associated thermal pleasure votes. We tested sev-
eral different model development techniques, ranging from simple 
linear regression through to supervised machine learning includ-
ing support vector machine and gradient boosting algorithms. We 
decided to use the “RandomForest” implementation of the random 
forest classifier65 to explore different models, and a random forest 

F I G U R E  4  Time series data from Parkinson et al.13 for room air temperature (top; first) mean skin temperature (second), cumulative 
receptor impulses per minute for all body sites (third), and thermal pleasure votes (fourth; bottom). Pleasure votes were cast every minute 
on a 7-point Likert scale, ranging from +3 (very pleasant) to 0 (indifferent) to −3 (very unpleasant). Data from individual subjects (faint) and 
the group (solid) are shown. Red lines show the total cumulative warm receptor impulses, and the blue lines show the cold receptors. Slight 
changes in skin temperature before transitions are due to changes in posture and movements when preparing to enter and exit the test 
chamber
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regression model for final testing and validation. The random forest 
algorithm was chosen for performance and the availability of meth-
ods to develop interpretable machine learning models for explaining 
black box systems. We tested different hyperparameters to decide 
to limit models to 100 trees to balance accuracy and model com-
plexity. Data were partitioned into training (80%) and testing (20%) 
datasets, and 10-fold 3-repeat cross-validation was used to ensure 
robust and reliable results.

2.5  |  Data Analysis Software

We used R (version 3.5.0) and RStudio IDE (version 1.2.5033) for 
all analyses, along with the following packages: tidyverse,66 caret67 
(version 6.0-86), yardstick68 (version 0.0.6), ggpubr69 (version 0.2.5), 
pdp70 and ggridges71 (version 0.5.2).

3  |  RESULTS

3.1  |  Simulated thermoreceptor impulses

A summary of thermal pleasures votes and simulated thermorecep-
tor impulses is shown in Figure 5. The model development dataset 
had more negative than positive pleasure votes, with the majority 
of responses ranging between slightly unpleasant (−1) and slightly 
pleasant (+1). The distribution of thermoreceptor impulses shows 
the predominant activity is the static response from the warm re-
ceptors. There was more warm receptor activity when subjects 
were experiencing displeasure and more cold receptor activity when 

experiencing pleasure. This is expected given the exposures were 
designed to create warm displeasure followed by a pleasant, cool 
corrective change.

We used k-means clustering to group thermal pleasure votes 
to test for differences in the responses between the 12 subjects. 
Figure 6 shows two distinct trends in thermal pleasure votes. Age, 
gender, and BMI were considered as the basis of cluster member-
ship, but the most important factor was subjects’ response to a 
general thermal preference question (“do you prefer warmer or 
cooler temperatures on average”). The “Cool Preference Cluster” 
was comprised of 4 subjects and the “Warm Preference Cluster” 
had 6 subjects. Two subjects who responded with “neither” were 
in the warm preference cluster based on the k-means analysis. 
Clustered subjects with a cool preference had a lower mean plea-
sure vote when in the warmer rooms than the warm preference 
subjects but responded positively to the cold step-changes (t40 
and t125) and maintained pleasure throughout the cold room ex-
posure (t125–t160).

A psychological parameter (general thermal preference) seemed 
to delineate cluster membership, and we wanted to explore physi-
ological differences between these groups. Figure 7 shows statis-
tically significant differences in thermoreceptor response between 
the two clusters for some of the room exposures in the experimental 
sequence. Warm receptor impulses were significantly higher for the 
cool preference cluster in the second (warm room with fan) and third 
(neutral) exposures in the sequence, and significantly lower in the 
final cool room exposure. Given the thermoreceptor model's reli-
ance on skin temperature input, this result suggests potential neuro-
physiological differences between subjects that shape their thermal 
perception.

F I G U R E  5  Summary data for thermal pleasure votes (left) and receptor impulses (right) for the model development dataset. Pleasure 
votes are separated by valence (red is negative; green is positive). The distribution of receptor impulses is shown by type (warm/cold; 
dynamic/static) and separated based on the valence of the contemporaneous pleasure response. The white line indicates the median
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2272  |    PARKINSON et al.

3.2  |  Model development

We tested and compared the performance of four random forest 
classification models in predicting alliesthesia. All models used 
simulated thermoreceptor impulses to perform multi-class classi-
fication into the 7-point thermal pleasure scale. We simplified the 
features (inputs) across the four models while attempting to bal-
ance overall accuracy. A summary of model performance is shown 
in Figure 8.

The “Full Model” was the most complex, using all 52 features (the 
dynamic/static response of warm/cold receptors for 13 body sites) 
to predict thermal pleasure. It had the highest accuracy and was able 
to correctly classify 87% of mid-range pleasure responses. In almost 
all cases, the predicted pleasure was ±1 vote from the observed, and 
only ~4% of responses were false negatives/positives. However, the 
feature importance of the model did not provide much logical in-
ference for understanding alliesthesia. While the F1 score was ac-
ceptably high (72%), there was significant multicollinearity between 

F I G U R E  6  Time series of thermal pleasure votes separated by cluster membership. The cluster in the top panel is subjects with a 
preference for cooler temperatures and the bottom a preference for warmer temperatures

F I G U R E  7  Box plot of warm thermoreceptor and cold thermoreceptor impulses for the different room exposures. Subjects were grouped 
by cool (blue) and warm (red) preference as determined by k-means clustering. t test significance is shown inset where differences were 
found (**≤0.01, ***≤0.001, ****≤0.0001)
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    |  2273PARKINSON et al.

the thermoreceptor response type (static/dynamic) and body sites 
(see Figure S2). Principal component analysis (PCA) found that eight 
components could explain 74% of the variance in the 52 features.

The PCA coordinates of the eight components have limited prac-
tical use but did demonstrate the need for dimension reduction. We 
focused on the theoretical framework of alliesthesia that posits plea-
sure is driven by the whole-body (load error) and local (corrective 
change) states. Correlation analysis (see Figure S2 for full correlation 
matrix) found that receptor activity at the chest was highly correlated 
with total warm impulses (dynamic  =  0.70, static  =  0.88) and the 
shoulder with total cold impulses (dynamic = 0.91, static = 0.94). The 
importance of cold thermoreceptors at the shoulder is explained by 
the positioning of the fan behind subjects. Using the simulated ther-
moreceptor activity from these two sites, a parsimonious “Rational 
Model” was set up and was able to achieve accuracy of 67% from 
only eight features. Despite the reduced accuracy, the confusion 
matrix in Figure  8 shows a mid-range accuracy (83%) comparable 
to the “Full Model” and a negligible increase in false positives/neg-
atives. The static response of the warm receptors was the most im-
portant feature for classifications of both displeasure and pleasure. 
The experiment protocol offers insight into these results; this will be 
discussed in a later section.

We tested two other models based on the summed receptor im-
pulses for all body sites (“Total Model”) and selecting the site with 
the maximum impulses from the warm and cold receptors (“Max 
Model”). There was a drop in the F1 score and mid-range accuracy 
compared to the “Full Model” and “Rational Model,” but both were 
able to reasonably predict thermal pleasure responses. Despite 
fewer correct classification of pleasure votes, the valence and gen-
eral magnitude of the predicted pleasure votes was acceptable. The 
feature importance of the “Total Model” showed that the static 
responses of receptors contributed most to both displeasure and 
pleasure.

3.3  |  Model validation

With the exception of the “Rational Model,” these approaches have 
the practical limitation of depending on an increasing number of 
measurements of skin temperatures across the body to achieve ac-
ceptable performance. This constraint, along with the accuracy and 
feature selection of the tested models, led us to focus on the rational 
approach based on receptor impulses from the shoulder (local) and 
chest (whole-body). The “Rational Cluster Model” uses the receptor 
activity from the shoulder and chest as inputs to a random forest 

regression. It also considers the cluster membership based on a two-
class thermal preference (cooler, warmer).

The dataset from Parkinson et al. 13 was partitioned so that 80% 
was used for training the model and 20% for testing. Figure 9 shows 
the predicted thermal pleasure votes for the testing dataset using the 
“Rational Cluster Model”. There is good agreement between the model 
predictions and the observed thermal pleasure votes, with a mean ab-
solute error (MAE) of 0.35 for the cool preference group and 0.51 for 
the warm preference group. Despite the volatility of individual votes, 
the model is able to predict the general trend in mean thermal pleasure 
as well as the differences between subject clusters. It also captures 
the immediate pleasure responses following the temperature step-
changes at t40 and t125. The residuals show no clear systematic bias in 
the predictions, with errors likely reflecting inter-individual differences 
in pleasure. This is also evident in that the thermal preference cluster 
membership ranks fifth in feature importance.

While the “Rational Cluster Model” performance on the training 
dataset is encouraging, it is important to test on an independent data-
set to determine whether the modeling technique is generalizable. We 
used data from a completely independent human-subject laboratory 
test (see Figure S1 for data summary) and extracted the necessary 
features (inputs) for the “Rational Cluster Model.” Skin temperatures 
at the shoulder and chest were not monitored, so we used correla-
tion analysis to determine that the hand was most similar to the total 
warm static response (r = 0.78) and the forehead most similar to the 
total cold dynamic response (r = 0.73) (see Figure S5 for full correlation 
matrix). These two sites were used as inputs in place of the chest and 
shoulder, respectively. Finally, k-means clustering found two distinct 
groups in the independent dataset based on thermal pleasure votes. 
The same labels from the model training exercise were used to assign 
cool (n = 13) and warm (n = 9) preference clusters.

The results of the “Rational Cluster Model” validation on the in-
dependent dataset are shown in Figure 10. Despite using different 
body sites, the model was able to capture the different pleasure re-
sponses between groups. There is reasonable agreement between 
the observed and predicted mean thermal pleasure for the front 
facing fan exposures, with a MAE of 0.55 for the cool preference 
group and 0.33 for the warm preference group. However, the model 
fails to capture the pleasure response during the back-facing fan ex-
posures. The mean absolute error for the cool preference group is 
much higher for the back-facing fan cases (1.47). Such a large error 
is expected because the model used simulated receptor activity on 
the forehead to predict pleasure responses, a site which did not ex-
perience cooling from the fan placed behind the subject. The error is 
lower in the warm preference group because the pleasure response 

F I G U R E  8  Performance of different random forest models in predicting thermal pleasure. Confusion matrices (left side) show the 
classification of predicted (x-axis) and observed pleasure (y-axis). Cell percentages represent the share of the total sample. Red squares are 
used to mark areas of false negatives and false positives. F1 Score shows the overall model performance, and we dropped the 4% of very 
(un)pleasant responses to recalculate the “Mid-range Accuracy” for responses ranging from unpleasant (−2) through to pleasant (+2). Feature 
importance (right side) ranks input parameters based on their overall contribution to model predictions. Importance is split according to the 
contribution to pleasure (green) and displeasure (red) responses. Coding is used to distinguish warm (w) and cold (c) receptors and their static 
(s) and dynamic (d) responses
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was more muted. Despite this, the results indicate that a modeling 
approach based on neurophysiology can predict thermal pleasure in 
dynamic conditions.

4  |  DISCUSSION

Previous work on alliesthesia13,72 has indicated that pleasure re-
sponses appear to be cutaneous in origin, where changes in skin 
temperature with a restorative or corrective effect on body tem-
perature are pleasant. While most attempts at modeling thermal 
perception have traditionally used skin temperature,5,6,7,73 this study 
used the simulated activity of cutaneous thermoreceptors.55 The 
advantage of using the activity of sensory neurons responsible for 
temperature transduction is that this is the basis of human thermal 
perception. The model worked well in estimating thermoafferent 
traffic of subjects exposed to dynamic thermal environments, with 
both cold- and warm-receptor responses following logical patterns. 
The response of receptors to sudden temperature changes better 
represented the rapid perceptual processes that were muted in skin 
temperature trends.

The model training dataset had more displeasure responses 
and greater warm receptor activity due to the experimental de-
sign. The sequence of exposures in Parkinson et al13 was de-
signed to induce warm displeasure followed by a cool corrective 
change either through a temperature step-change or elevated air 

movement. The distribution of receptor activity in Figure 5 shows 
that displeasure was generally associated with higher warm re-
ceptor activity, while the cold receptor activity is heightened 
during thermal pleasure. This demonstrates the usefulness of the 
thermoreceptor model in summarizing the thermal experience of 
subjects. Previous attempts have shown a relationship between 
receptor activity and thermal sensation,54,56 and our findings sup-
port the validity of the approach for predicting pleasure responses 
in dynamic environments.

It is beyond the expertise of the thermal comfort research 
community to validate thermoreceptor models, but we believe the 
absolute measurement of receptor impulses is not required to suc-
cessfully model thermal perception using neurophysiology. Indeed, 
we scaled simulated receptor activity for each subject before train-
ing the models. Correctly estimating the coefficients in the receptor 
model is unlikely to yield significant improvements in the accuracy 
of predictions of thermal pleasure given the abstraction of our ap-
proach, for example, free-floating skin model, simplification of cu-
taneous layers across all body sites, totaling receptor impulses per 
minute. However, it may be useful to apply sensitivity weightings 
to simulated receptor impulses at different body sites to reflect the 
downstream integration and processing of thermoafferents by the 
central nervous system. Investigations of regional thermosensitivity 
by Zhang et al,6 Cotter and Taylor,39 Filingeri et al.,74 and Luo et al.48 
all offer weighting coefficients that could be adopted in future mod-
eling efforts.

F I G U R E  9  Predicted thermal pleasure of the “Rational Cluster Model” based on chest and shoulder thermoreceptor activity and thermal 
preference clusters. The top panel shows the predicted (purple) and observed (gray) thermal pleasure for the cool (top) and warm (bottom) 
preference clusters. Bar charts below the panels show the residuals. The side panel shows the ranked feature importance of the final model
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4.1  |  Model feature selection

A principal aim of this paper is to use machine learning techniques to 
understand the relationship between neurophysiology and thermal 
pleasure. Comparing different modeling approaches and the subse-
quent feature selections allowed us to shed light on the operating 
mechanics of thermal alliesthesia. It is unsurprising that the most 
accurate model reported in Figure 8 (“Full Model”) was based on 52 
inputs of thermoreceptor activity. However, ranked feature impor-
tance for that model appeared to be a statistical artifact rather than 
useful inference. We also tested other features (eg, lagged thermal 
pleasure vote) that improved model accuracy but were inconsistent 
with the alliesthesial framework. Understanding how these models 
operate highlights a challenge of using machine learning - interpret-
ability. Simpler techniques like linear and logistic regression are 
popular in part because insights are easily extracted from statistical 
outputs. Black-box machine learning methods are powerful predic-
tive tools but often lack clear insights.

The multicollinearity of features reported by correlation and 
principal component analyses (see Figure S2) requires dimension 
reduction to improve model interpretability and avoid overfitting. 
Overlapping feature importance for warm and cold receptor activity 
in Figure 8 suggests it may be possible to further simplify models 
by using the activity of one receptor type (warm or cold) per body 
site. The increasing activity of one temperature-specialized recep-
tor intrinsically results in decreased activity in the other type for 
the same body site. While the consequences of this relationship for 
numerical modeling appear logical, there is an important difference 
in pleasure response taking place during the rapid increase in one 
receptor's activity and the simultaneous decrease in activity in the 
other. Parkinson & de Dear75 reported two distinct phases in plea-
sure response over time: marked change in thermal pleasure for the 
first few minutes of the change (onset), and a more gradual shift 
over time depending on the nature of the change and physiological 
state (tail). It was suggested that the rapid perceptual shift during the 
onset phase is indicative of the dynamic receptor response, while the 

F I G U R E  1 0  Predicted thermal pleasure for the independent dataset using the final alliesthesia model. The top panel shows the time 
series of predicted (purple) and observed (gray) thermal pleasure for the cool (top) and warm (bottom) preference clusters. Points show 
individual votes and solid lines are group means. The bottom panel shows the simulated warm thermoreceptor activity of the hand (red) and 
cold thermoreceptor activity of the forehead (blue) during the exposure. Light lines show individual data and heavy lines are group means
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gradual change during the tail period is characteristic of the steady-
state response. We anticipated the dynamic response of receptors 
ranking highly in feature importance for pleasure predictions, but 
the static response made a greater contribution in all cases. The nu-
merical relationship reflected in the simultaneous change in activ-
ity between warm and cold receptors may explain this result. It is 
also possible that if the target variable was the change in thermal 
pleasure vote at each time step, then the importance of dynamic re-
sponses of thermoreceptors to model predictions would rank higher.

4.2  |  Model performance

The “Rational Cluster Model” provided an accurate solution to 
predicting thermal (dis)pleasure on a 7-point scale while support-
ing the general alliesthesia hypothesis. It is noteworthy that it 
reliably predicts trends in pleasure responses for a subject pool 
exposed to a sequence of environments different from the model 
training dataset (Figure  10). Furthermore, there are no inputs 
about the exposure type, duration, and sequence or subject an-
thropometrics. And simplifying the classification problem to three 
(positive, neutral, or negative pleasure) or even two (positive or 
negative pleasure) classes would likely improve all model perfor-
mance metrics.

Using correlation analysis to determine body sites that char-
acterize whole-body state and local change (see Figure S2 and S5) 
was a reliable dimension reduction technique. The “Rational Cluster 
Model” was trained using receptor activity at the shoulder and chest 
but accurately predicted pleasure responses in the validation exer-
cise using the impulses at the forehead and hand, respectively. While 
the hand and forehead have been identified as important body sites 
for thermosensitivity,1,50 agnosticism to body site suggests that the 
principal requirement is capturing the physiological load error along 
with the local corrective stimuli. Indeed, the model failed during back-
cooling exposures because the stimuli were not reflected in the fore-
head receptor activity. It is likely that any practical implementation 
of the model needs to capture those two components of spatial al-
liesthesia as a minimum. These findings indicate that the pleasure 
from corrective thermal stimuli at a single body site largely shapes 
the whole-body experience.

Performance metrics show that simulated receptor activ-
ity is a sufficient basis for a predictive model of thermal pleasure. 
Comparison of the trends in pleasure votes and receptor activity 
reveals a relationship between neurophysiology and affective re-
sponses. In Figure  10, the constant warm receptor activity main-
tained throughout the experiment represents the physiological load 
error incurred from prolonged exposure to elevated air tempera-
tures (~26°C). The model predicts thermal pleasure votes increased 
at the onset of cooling and is maintained as long as the cooling 
persists. The timing and magnitude of the positive pleasure appear 
commensurate with the cold receptor activity. We anticipate similar 
relationships between neurophysiology and pleasure when model-
ing analogous exposures of cold displeasure and warm corrective 

pleasure; future work will test the same modeling approach in dif-
ferent dynamic thermal environments.

4.3  |  Model personalization

Earlier works on alliesthesia1,13 have emphasized the importance of 
inter-individual difference in understanding thermal pleasure. This 
reflects a broader trend within the thermal comfort research com-
munity to perform analyses of individual comfort as well as group 
averages.76,77 This is particularly relevant for alliesthesia research 
because, unlike thermal sensation, thermal pleasure is nonmono-
tonic within a subject sample. The model we presented can accu-
rately predict the mean thermal pleasure of the subject group but is 
less accurate when modeling individuals. The importance of thermal 
preference clusters in Figure  9 demonstrates the need to include 
inter-individual differences through variables we have yet to identify 
that capture and encode measures of personalization.

The cluster membership determined by k-means cluster was 
assumed to relate to thermal preference. It is possible that other 
psychological or anthropometric parameters better explain the 
differences in thermal pleasure votes between the two clusters. 
However, in our results, including both gender and thermal prefer-
ence did not improve model accuracy beyond that achieved using 
thermal preference alone. It is difficult to determine the precise rea-
son for cluster membership, but our preliminary analysis in Figure 7 
indicates there may be a neurophysiological basis for reported dif-
ferences. This may be a promising avenue for research into the psy-
chophysiological basis of thermal preference.

4.4  |  Model applications

This work was a fundamental investigation of thermal perception 
in dynamic environments. However, we see several real-world ap-
plications for the findings. They may provide a research framework 
to explore the cellular, neurological, psychological, and physiological 
mechanisms of alliesthesia. The determination of the fundamental 
underlying mechanism would allow it to be accurately measured or 
proxy effects to be identified that would enable more accurate and 
customizable models. Our model predictions are based on skin tem-
perature measurements from only two body sites. This is significantly 
fewer inputs than traditional heat-balance models of comfort require, 
but acquiring the requisite physiological data presents unique chal-
lenges. In many cases, it would be difficult to determine a priori the 
two body sites that reflect the local and whole-body experience. 
Some environments such as vehicular cabins make these assumptions 
more valid because the position of the occupant relative to possi-
ble thermal stimuli can be reliably estimated. In such cases, contact-
less measurement of skin temperature by infrared cameras78 could 
generate the necessary data. For many indoor environments, skin 
temperatures could be estimated using multi-node thermophysiolog-
ical models.79,80 It is possible to directly integrate machine learning 
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algorithms with these advanced comfort models for real-time pre-
dictions of occupant pleasure experienced under any architectural 
solution. Such a tool would mark a paradigm shift by empowering 
architects to purposefully design thermal textures within indoor en-
vironments, thereby deprioritizing the heavily conditioned spaces 
promoted by traditional heat-balance comfort models.

5  |  LIMITATIONS

Our aim was to encourage the uptake of the alliesthesia hypothesis 
by developing a “proof-of-concept” model to highlight a potential 
avenue for further research efforts. The lack of intensive and po-
tentially invasive thermophysiological factors limits the application 
to relying on assumptions for subcutaneous temperature values and 
receptor coefficients. Although the feature importance and model 
performance metrics are useful, they are only applicable to these 
datasets. In addition, the sample size and the subject pool used for 
model training are small for machine learning applications and limit 
the generalizability. It is also unbalanced, with a majority of pleasure 
votes within the range between slightly unpleasant (−1) and slightly 
pleasant (+1) with few strong (dis)pleasure votes. Future efforts will 
focus on using a more balanced, diverse, and comprehensive set of 
psychophysiological data to train a robust model.

6  |  CONCLUSIONS

This is the first study to demonstrate the use of neurophysiological 
parameters to predict thermal pleasure. We used simulated thermo-
receptor activity across several body sites to build a random forest 
model to predict thermal pleasure during temperature step-changes, 
ramps, and asymmetrical exposures. Comparison of different ap-
proaches to feature selection and model development provided 
insight into the operating characteristics of alliesthesia. The first 
finding is that simulated thermoreceptor activity captures the fast 
response of the somatosensory system to changes in the thermal 
environment. This suggests that neurophysiological variables are 
more suitable than skin temperature for modeling thermal pleasure 
in dynamic conditions. Second, decision trees (random forest) are a 
promising approach for the development of a predictive model of 
alliesthesia. Interpretation of such models is a key challenge, but our 
analysis suggests that estimates of pleasure votes are derived in a 
way consistent with alliesthesia theory. Third, our approach relied 
on only two body sites that reflected the whole-body state and the 
local corrective change. This further supports the spatial alliesthesia 
concept and simplifies the necessary inputs for predicting thermal 
pleasure. Lastly, parameters that capture inter-individual differences 
are necessary to improve the accuracy of estimates of thermal pleas-
ure. Further work is needed to identify those personalization vari-
ables that actively shape individual thermal perception.

The findings we presented here demonstrate that thermal plea-
sure can be modeled in a manner consistent with alliesthesia theory. 

This marks an exciting paradigm shift in understanding thermal per-
ception in dynamic environments. It is hoped that this will serve as a 
useful reference for future efforts to explore and model alliesthesia 
in the built environment.
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